Ionic currents underlying developmental regulation of repetitive firing in Aplysia bag cell neurons.

نویسندگان

  • T A Nick
  • L K Kaczmarek
  • T J Carew
چکیده

We have investigated the developmental regulation of the ability to fire repetitively in the bag cell neurons of Aplysia californica, a neuronal system in which the behavioral effects of repetitive firing are well characterized. Adult bag cell neurons exhibit an afterdischarge, consisting of prolonged depolarization and repetitive firing, which causes the release of several peptides from these neurons that induce egg-laying behaviors. Afterdischarge can be triggered in vitro by a variety of stimuli, including electrical stimulation and exposure to the potassium channel blocker tetraethyl ammonium chloride (TEA). In contrast to adults, juvenile neurons did not exhibit afterdischarge in response to pleural-abdominal connective shock or TEA. Juvenile neurons did exhibit, however, prolonged depolarizations in the presence of TEA, perhaps reflecting the anlage of the mechanism responsible for afterdischarge in the adult. To investigate developmental mechanisms underlying the regulation of repetitive firing, we compared ionic currents in adult and juvenile bag cell neurons. We found that during the period in which these neurons acquire the capacity to fire repetitively, a number of currents are regulated: (1) three K+ currents decrease (Ca2+)-dependent K+ and two components of voltage-dependent delayed-rectifier K+ current); (2) A-type K+ current increases; and (3) two Ca2+ currents increase (basal and PKC-activated). This pattern is consistent with the increase in the ability to fire repetitively that we observe during maturation: our results indicate that developmental control of repetitive firing in this system is accompanied by selective regulation of specific ionic currents which, after maturation, play important roles in generating the afterdischarge and triggering egg-laying behaviors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protein kinase C regulates a vesicular class of calcium channels in the bag cell neurons of aplysia.

Protein kinase C (PKC) acutely increases calcium currents in Aplysia bag cell neurons by recruiting calcium channels different from those constitutively active in the plasma membrane. To study the mechanism of PKC regulation we previously identified two calcium channel alpha1-subunits expressed in bag cell neurons. One of these, BC-alpha1A, is localized to vesicles concentrated primarily in som...

متن کامل

The neuropeptide egg-laying hormone modulates multiple ionic currents in single target neurons of the abdominal ganglion of Aplysia.

The bag cell neurons of the abdominal ganglion of Aplysia are a useful system for the study of peptidergic neurotransmission. A 20 min burst of impulse activity in the bag cells induces or augments repetitive firing in LB and LC neurons in the abdominal ganglion for up to several hours. Previous experiments have indicated that this effect is mediated by the putative bag cell transmitter egg-lay...

متن کامل

Electrical coupling between Aplysia bag cell neurons : 3 characterization and role in synchronous firing 4 5 6 by : 7 8 9

2 Electrical coupling between Aplysia bag cell neurons: 3 characterization and role in synchronous firing 4 5 6 by: 7 8 9 Zahra Dargaei*, Phillip L.W. Colmers*, Heather M. Hodgson, and Neil S. Magoski 10 11 Department of Biomedical and Molecular Sciences, Physiology Graduate Program, 12 Queen’s University, Kingston, ON, K7L 3N6, Canada 13 14 15 16 Running title: bag cell neuron electrical synap...

متن کامل

Identification and characterization of a Ca(2+)-sensitive nonspecific cation channel underlying prolonged repetitive firing in Aplysia neurons.

The afterdischarge of Aplysia bag cell neurons has served as a model system for the study of phosphorylation-mediated changes in neuronal excitability. The nature of the depolarization generating the afterdischarge, however, has remained unclear. We now have found that venom from Conus textile triggers a similar prolonged discharge, and we have identified a slow inward current and corresponding...

متن کامل

Development of ionic currents underlying changes in action potential waveforms in rat spinal motoneurons.

Development of ionic currents underlying changes in action potential waveforms in rat spinal motoneurons. J. Neurophysiol. 80: 3047-3061, 1998. Differentiation of the ionic mechanism underlying changes in action potential properties was investigated in spinal motoneurons of embryonic and postnatal rats using whole cell voltage- and current-clamp recordings. Relatively slow-rising, prolonged, la...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 16 23  شماره 

صفحات  -

تاریخ انتشار 1996